a2 United States Patent

Flynn et al.

US009282036B2

US 9,282,036 B2
*Mar. 8, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

DIRECTED ROUTE LOAD/STORE PACKETS
FOR DISTRIBUTED SWITCH
INITIALIZATION

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: William T. Flynn, Rochester, MN (US);
Joseph A. Kirscht, Rochester, MN (US);
Bruce M. Walk, Rochester, MN (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 65 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/772,018

Filed: Feb. 20, 2013
Prior Publication Data
US 2014/0233579 Al Aug. 21,2014

Related U.S. Application Data

Continuation of application No. 13/771,670, filed on
Feb. 20, 2013.

Int. Cl1.

HO4L 12/721 (2013.01)

U.S. CL

CPC ... HO4L 45/72 (2013.01); HO4L 45/44

(2013.01); HO4L 45/66 (2013.01); HO4L 45/34
(2013.01); HO4L 45/566 (2013.01)
Field of Classification Search
UspC ... 370/225, 290, 380, 386, 390, 392, 393,
370/396, 400, 401; 709/230, 233
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

12/1986 Franklin et al.
7/1992 Shand et al.

(Continued)

4,631,534 A
5,134,610 A

FOREIGN PATENT DOCUMENTS

JP 03273727 A
JP 11341060 A
JP 2011166692 A

12/1991
12/1999
8/2011

OTHER PUBLICATIONS

U.S. Appl. No. 13/771,670 entitled “Directed Route Load/Store
Packets for Distributed Switch Initialization,”, filed Feb. 20, 2013.

(Continued)

Primary Examiner — Edan Orgad
Assistant Examiner — Saumit Shah
(74) Attorney, Agent, or Firm — Patterson & Sheridan, LLP

(57) ABSTRACT

Techniques are described for transmitting a packet from a
source switch module to a destination switch module.
Embodiments receive, at the source switch module, from the
destination switch module, path information specifying a
path from the source switch module to the destination switch
module. Upon detecting an occurrence of a predefined event,
apacket is generated that includes (i) the received path infor-
mation and (ii) payload data to be processed at the destination
switch module. Embodiments determine an Ethernet port of
the source switch module on which to transmit the packet,
based on the received path information. The packet is trans-
mitted to a second switch module using the determined Eth-
ernet port.

18 Claims, 10 Drawing Sheets

RECEIVE DATA PACKET WITH PACKET HEADER
SPECIFYING A PATH TO A CONTROL NODE

RETRIEVE PATH DATA
FROM DATA PACKET

f

DETERMINE NEXT NODE | _ 1g25
BASED ON PATH DATA

f

TRANSMIT DATA PACKET | {030
TO NEXT NODE

I

b~ 1020

NODE IS CONTROL
NODE ?

1000
[~ 1010
1015
YES
EXTRACTPAYLOAD | _ 1035
OF DATA PACKET
PROCESS PAYLOAD [~ 1040

US 9,282,036 B2

Page 2
(56) References Cited 2005/0094630 Al 5/2005 Valdevit
2005/0102437 Al 5/2005 Pettey et al.
U.S. PATENT DOCUMENTS 2005/0147117 Al 7/2005 Pettey et al.
2005/0268137 Al 12/2005 Pettey
5,237,565 A 8/1993 Henrion et al. 2006/0002304 Al 1/2006 Ashwood-Smith
5,608,720 A 3/1997 Biegel et al. 2006/0077974 Al 4/2006 Goossens et al.
6,081,506 A 6/2000 Buyukkoc et al. 2006/0198356 Al 9/2006 Mayernick
6,185,214 Bl 2/2001 Schwartz et al. 2007/0115964 Al 5/2007 Srinivasan et al.
6,198,747 Bl 3/2001 Bingham et al. 2007/0297406 Al 12/2007 Rooholamini
6,246,680 Bl 6/2001 Muller et al. 2008/0126649 Al 5/2008 George
6,331,983 Bl 12/2001 Haggerty et al. 2008/0148010 Al 6/2008 Kodama
6,487,177 Bl 11/2002 Weston-Dawkes 2008/0285562 Al 11/2008 Scott et al.
6,618,373 B1* 9/2003 Subramaniam 370/390 2009/0109967 Al 4/2009 Banerjee et al.
6,697,359 Bl 2/2004 George 2009/0265449 Al 10/2009 Krishnappa et al.
6,934,283 B1* 8/2005 Warner 370/380 2009/0285128 Al 11/2009 Swan
6,952,421 Bl 10/2005 Slater 2010/0095020 Al* 4/2010 Rixneretal. 709/233
7,046,668 B2 5/2006 Pettey et al. 2011/0085557 Al 4/2011 Gnanasekaran et al.
7,093,027 Bl 8/2006 Shabtay et al. 2011/0090804 Al 4/2011 Wausirika
7,188,209 B2 3/2007 Pettey et al. 2011/0222534 Al 9/2011 Kurita
7,219,183 B2 5/2007 Pettey et al. 2011/0273980 Al* 11/2011 Ashwood Smith 370/225
7,221,676 B2 5/2007 Green et al. 2011/0286326 Al 112011 Awano
7,372,843 Bl 5/2008 Asawa et al. 2011/0289344 Al 11/2011 Baeetal.
7,457,906 B2 11/2008 Pettey et al. 2012/0044944 Al 2/2012 Kotha et al.
7,461,130 Bl 12/2008 AbdelAziz et al. 2012/0051232 Al 3/2012° Nomura
7,477,657 Bl 1/2009 Murphy et al. 2012/0099602 Al 4/2012 ngapudl et al.
7,525,968 Bl 4/2009 Dropps et al. 2012/0143892 Al 6/2012 Fried et al.
7,599,283 Bl 10/2009 Varier et al. 2012/0188865 Al 7/2012 Michaelis et al.
7,613,816 Bl 11/2009 Dropps et al. 2014/0003249 Al 1/2014 Cai
7,746,872 B2 6/2010 Norden 2014/0086044 Al 3/2014 Engebretsen et al.
7,774,440 Bl 8/2010 Bagrodia et al. 2014/0086051 Al 3/2014 Engebretsen et al.
7,788,522 Bl 8/2010 Abdelaziz et al. 2014/0229602 Al 8/2014 Engebretsen et al.
8,149,834 Bl 4/2012 Nielsen et al. 2014/0233566 Al 8/2014 Flynn et al.
8,194,534 B2 6/2012 Pandey et al. 2014/0233578 Al 8/2014 Flynn et al.
8,396,022 Bl 3/2013 Lindsay et al. 2014/0269692 Al 9/2014 Flynn et al.
8,842,523 B2 9/2014 Engebretsen et al. 2014/0269693 Al 9/2014 Flynn et al.
8,848,517 B2 9/2014 Engebretsen et al. 2014/0269694 Al 9/2014 Flynn et al.
2001/0019554 A1 9/2001 Nomura et al. 2015/0103833 Al 4/2015 Flynn et al.
2001/0050915 Al 12/2001 O’Hare et al. 2015/0103834 Al 4/2015 Flynn et al.
2002/0013847 Al 1/2002 Fisher et al. 2015/0139239 Al 5/2015 Flynn et al.
2002/0067731 Al 6/2002 Houston et al. OTHER PUBLICATIONS

2002/0150088 Al 10/2002 Yoshino et al.

2003/0120715 Al 6/2003 Johnson et al. Lo . g
5003/0204273 Al 10/2003 Dinker et al. U.S. Application entitled “Directed Route Load/Store Packets for

2004/0028038 Al 2/2004 Anderson et al. Distributed Switch Initialization,”, filed Feb. 20, 2013.

2004/0260842 Al 12/2004 Pettey et al.
2005/0094568 Al 5/2005 Judd * cited by examiner

US 9,282,036 B2

Sheet 1 of 10

Mar. 8, 2016

U.S. Patent

_\ mu_n_ DCL 921A8(80d GGl 1wy
Gl
| |
I I
221 Yod [0d €¢l Hod 10d oz ewerd ooy Muewa
weasnsdn weaJsumog abpug abpug
1/ _ _
orl WOl & Jeke] —— Jakeq — 1afeq
9¢L yodsuer) 9k odsues) b yiodsued|

Jafkeq Buyoymg

L} BUIOBW [ENHIA |

[Pl ouyoep fenpiA | |

L Sulyoe [enyiA |

B0l 10SS800id _L|A|

701 wajshs Bunesedo|

o0l lanieg

TL1 8ulyoep [enpIA

— e | = afe — e — el | == e — ke
scl Jodsuel | scl Modsuel | el uodsuel| scl Modsuel | ¢l uodsuel| F Uodsued |
[[[[[[
s57 HOd 10d | | fazp WWBWSIS w57 JUBWI|3 557 HOd 10d | | azp USWRId 57 JUsWe|3
ccl weansdn 0cl abpug 0cl abpug (244 weansdn 0ct abpug F abpug
— obpug | | —— Joydepy —— Iaydepy — obpug | | = Jeydepy —— Jaydepy
L gsop1od | | SH yomn b yomon b sson 10 | | F+F somen L yomn

I
1
LY | 71T 9Bpug jenuip | — _
Shr sosyedAy b TET ouyoep enyip
_

[T SUILOB [enUIA

601

10888201

101 weyshg Bunessdo

S0l Joneg

08l

001

US 9,282,036 B2

Sheet 2 of 10

Mar. 8, 2016

U.S. Patent

002

0L 0zl 76z DO
7| Tz oo
T4 k414
___ Jopauuoy ﬁ ﬁ YoUMs a|npon
09¢ 19d -gns UoUMS
fisulaylg
—~—0€1L
ozi | 0zt |95z owol ozk | ozl) ozi 0SC ®INPON LouMsS
((((ﬁ (
ﬂx m% s | ombor m% i /D ﬂx ~
s Uoums | s|npoN s Youmg |- youmg 05
-ans | youms -ang -ans ﬁ ss¢ Jnal
ﬁ —_ Joydepy — Joydepy —_ Jaydepy —__ Jaydepy
0zz kb yiomeN bl suomieN Sk yiomeN L yiomen
cle oLe lsnisg
S0¢ sisseyd

U.S. Patent Mar. 8, 2016 Sheet 3 of 10 US 9,282,036 B2

/ 300

130
254
254

N\

FIG. 3

254

N\ 7
< / 7
AN ~
254

/

254
254

US 9,282,036 B2

Sheet 4 of 10

Mar. 8, 2016

U.S. Patent

Nyge

Nozy S1MOd

NoLy

IT1NACKN
HOLIMS 3NIdS

00¥

¥ Ol
€y62 (0T byGe
¢ozy sldod bozy sl1dod
oLy oLy
J1NAOW J1NAOW
HOLIMS 3NIdS HOLIMS 3INIdS

US 9,282,036 B2

Sheet 5 of 10

Mar. 8, 2016

U.S. Patent

¢ 9Ol
O Gpg LNANOGHOO TOHINOD
13MOVd V1V
162 DO
I
y
NOLLYWRON — wadana NOLLVEOI —— ¥34d4n8
€gz6 QINI43ATNd S NOILNO3X3 lgze QaANI43ATNd §1S NOILNO3X3
— ___ INJNOdWOD — ___ ININOdWOD
ININOdNOD ININOdWOD
€ € l l
025 Zyovd viva 015 STHC 025 | 3yovd ViV 015 STHd
€0gs S1d0d bogg S1d0d
‘y5e / HOLIMS-aNns hysz \\ HOLIMs-9ns
¢0es S1d0d
NOILYWHOANI
- H1vd 2G5 zw_wm%_wm_
2gzg QaNI43ATUd
— ___ IN3NOdW
2 0zs ININOJNOD 2015 w.n_W“_n_ 00
130V V.1vd
005 0LF ITNAOW HOLIMS INIdS

US 9,282,036 B2

Sheet 6 of 10

Mar. 8, 2016

U.S. Patent

9 "Old

929 SNOLLYY3dO P v1va 3LNOoY

IHOLS / AYO1 NOILVYNILS3d

029 avoTAVd 019 y3avaH
009 \

US 9,282,036 B2

Sheet 7 of 10

Mar. 8, 2016

U.S. Patent

ge, S 1¥od
Y LL]
HOLIMS

00

L Old
o€l ¥ 140d
gzl Z 14¥0d
0ZZ IINAOW HOLIMS

gL/ € 1dod
or, 3Inaow
HOLIMS

US 9,282,036 B2

Sheet 8 of 10

Mar. 8, 2016

U.S. Patent

8 Old

618 ™1

3dON 10d.LINOD 3H1 O1 3dON FHL
INOY4 HLVd A3aNINY313a FHL ONIA4IO34S 3AON
HOV3 OL H3dV3H 13X0Vd JAILDTdSTY V LINSNVHL

A

018 "™

3dON TOHINOD V OL
3dON HOVd NOY4 HLVd 3AILO3dS3Y V ANINYE13d

008

NI©3d

US 9,282,036 B2

Sheet 9 of 10

Mar. 8, 2016

U.S. Patent

G26

0¢6

GlL6

0L6

6

Ol

H3AV3H 13X0Vd A9 @31d1093dS
3dON 1LX3N Ol 1IXOVd VLvA LINSNVYL

i

,

13MOVd V.1vd OLNI 3

Av3H L3IXMOVd 1H3SNI

|

,

3dON TOHLNOD Ol
HL1Vd ONIA4IO3dS ¥3AVIH 13MO0Vd A3 13y

|

,

3dON TO0H1LINOD OL 13XOVd

V1vad LINSNYYH1 Ol

1S3NO3Y 3AIFOTY

006

(NI938)

US 9,282,036 B2

Sheet 10 of 10

Mar. 8, 2016

U.S. Patent

] 300N 1X3N OL
0€0L 13M0Vd V1va LINSNYYHL

|

_

V1vd H1vd NO d3Svd

§¢01 "™ 3gON LX3N aINIWY3IL3a

|

_

13X0OVd v1vd NOYH4d

020l "™ wiva HLYd IAIIHLIY

ol 9l
anN3
SS3I00¥d
A
) 13MOVd V1va 40
Geol AVOIAVd LOvH1IX3
¢ JAON

TOYLNOD SI IAON
S3A %xm:o ON
GL0}

|

|

_

,

et

010} ™1

3dON TOYHLNOD V OL HLVd V ONIA4IO3dS
H3AV3IH 13X0Vd H1IM 13X0Vd V1vad 3AI3034

NIO3d

US 9,282,036 B2

1
DIRECTED ROUTE LOAD/STORE PACKETS
FOR DISTRIBUTED SWITCH
INITIALIZATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of co-pending U.S.
patent application entitled “DIRECTED ROUTE LOAD/
STORE PACKETS FOR DISTRIBUTED SWITCH INI-
TIALIZATION”, Ser. No. 13/771,670, filed Feb. 20, 2013.
The aforementioned related patent application is herein
incorporated by reference in its entirety.

BACKGROUND

The present invention relates to computer networking, and
more specifically, to techniques for reacting to events within
a distributed switch module using a set of predefined load/
store operations.

Computer systems often use multiple computers that are
coupled together in acommon chassis. The computers may be
separate servers that are coupled by a common backbone
within the chassis. Each server may be a pluggable board that
includes at least one processor, an on-board memory, and an
Input/Output (/O) interface. Further, the servers may be con-
nected to a switch to expand the capabilities of the servers.
For example, the switch may permit the servers to access
additional Ethernet networks or PCle slots, as well as permit
communication between servers in the same or different chas-
sis.

Additionally, the switch itself may be a distributed system.
For example, the distributed switch may include a plurality of
switch modules and one or more control modules. Generally,
the switch modules may each include a respective set of ports
and could be configured to act as independent sub-switches.
The control module(s) could provide control plane logic for
the plurality of switch modules, and the control module(s)
may be shared by the plurality of switch modules. One advan-
tage to such a distributed switch is that distributed systems
can oftentimes grow larger than conventional systems at less
cost. Additionally, distributed systems are frequently more
modular then conventional systems, allowing faulty, indi-
vidual components to be isolated and replaced in a more
efficient and inexpensive fashion.

SUMMARY

Embodiments provide a method, computer-readable stor-
age and system for transmitting a packet from a source switch
module to a destination switch module. The method, com-
puter-readable storage and system include receiving, at the
source switch module, from the destination switch module,
path information specifying a path from the source switch
module to the destination switch module. Additionally, the
method, computer-readable storage and system include, upon
detecting an occurrence of a predefined event, generating a
packet that includes (i) the received path information and (ii)
payload data to be processed at the destination switch mod-
ule. The method, computer-readable storage and system fur-
ther include determining an Ethernet port of the source switch
module on which to transmit the packet, based on the received
path information. The method, computer-readable storage
and system also include transmitting the packet to a second
switch module using the determined Ethernet port.

10

15

20

25

30

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates a system architecture that includes a
distributed, virtual switch, according to one embodiment
described herein.

FIG. 2 illustrates the hardware representation of a system
that implements a distributed, virtual switch, according to one
embodiment described herein.

FIG. 3 illustrates a distributed, virtual switch, according to
one embodiment described herein.

FIG. 4 illustrates a distributed, virtual switch, according to
one embodiment described herein.

FIG. 5 illustrates a distributed, virtual switch configured
with a data packet control component, according to one
embodiment described herein.

FIG. 6 illustrates a packet containing route data and a set of
load/store operations, according to one embodiment
described herein.

FIG. 7 illustrates a flow of a packet through a series of
switch modules, according to one embodiment described
herein.

FIG. 8 is a flow diagram illustrating a method for transmit-
ting packet headers to switch modules in a distributed switch,
according to one embodiment described herein.

FIG. 9 is a flow diagram illustrating a method for transmit-
ting a packet containing a predefined packet header, accord-
ing to one embodiment described herein.

FIG. 10 is a flow diagram illustrating a method for trans-
mitting a packet to a control node, according to one embodi-
ment described herein.

DETAILED DESCRIPTION

Generally, a distributed, virtual switch may include a plu-
rality of switch modules, each of which contains a set of ports
and logic to direct traffic between the ports. The distributed
switch may also include one or more control modules (also
referred to herein as a “switch management controller”),
which provide control plane logic for the plurality of switch
modules and are shared by the plurality of switch modules.
Doing so can allow distributed switches to scale to larger sizes
for less cost than conventional switches.

In some circumstances, it may be desirable for a controller
to direct the actions of individual switch modules within a
distributed switch. As an example, a controller could direct a
switch module’s actions in order to configure the communi-
cation links of the switch module. However, before the links
of the switch module within the distributed switch are con-
figured, the controller may be unable to communicate with
the switch module using Ethernet communications. In such a
situation, an administrator may be required to directly con-
nect to the switch module in order to configure the links of the
switch module manually.

As such, embodiments provide techniques for transmitting
a packet from a source switch module to a destination switch
module. Here, a payload of the management packet may
include a set ofload/store operations which are to be executed
by the destination switch module. For example, a controller
could transmit a management packet to a particular switch
module within the distributed switch, which contains a set of
load/store operations which, when executed, are configured
to configure the links of the switch module.

For instance, the controller could retrieve path information
specifying a route from the controller through the distributed
switch to the destination switch module. The controller could
then create a packet that includes at least a portion of the path

US 9,282,036 B2

3

information. For example, the packet could include a list of
link IDs that are used to transmit the packet from the control-
ler to the destination switch module. As an example, the
created packet could contain the ports “5, 2, 3”, indicating
that the controller will transmit the packet to a first switch
module using the controller’s link with link ID “5”, the first
switch module will transmit the packet to a second switch
module using the first switch module’s link with link ID “2”,
and the second switch module will transmit the packet to the
destination switch module using the second switch module’s
link with link ID “3”.

Additionally, the created packet could contain a set of
load/store operations to be executed by the destination switch
module. As discussed above, the set of load/store operations
could be a set of operations which, when executed, are con-
figured to configure the Ethernet communication links of the
destination switch module. The created packet is then trans-
mit to another switch module within the distributed switch.
Here, the packet could be transmitted using a link on the
controller unit that is determined based on the retrieved path
information. For example, the path information could specify
that the packet should be transmitted using the controller’s
link having link ID “5”.

The packet could then be received by an intermediary
switch module within the distributed switch. Generally, an
“intermediary switch module” refers to any switch module
within the distributed switch along a particular path between
a source (e.g., the controller) and a destination switch mod-
ule. Upon receiving the packet, logic on the intermediary
switch module could determine an identifier (e.g., a link ID)
of the link of the intermediary switch module on which the
packet was received. The logic could then insert the deter-
mined identifier into the packet, for use in transmitting an
acknowledgement message back to the source (e.g., the con-
troller) once the set of load/store operations have been
executed by the destination switch module.

For instance, as the packet passes through the intermediary
switch module(s) towards the destination switch module,
each intermediary switch module could insert a respective
link identifier into the packet. Once the destination switch
module has received the packet and executed the set of load/
store operations, the packet could then be passed back
through the intermediary switch modules to the source (e.g.,
the controller). Each intermediary switch module could then
use the link identifier that the intermediary switch module
previously inserted into the packet to select which link to
transmit the packet on. Thus, for example, if an intermediary
switch module initially received the packet on its link having
a link ID of “3”, the intermediary switch module could then
transmit the acknowledgement message back to the source
using the link having a link ID of “3”.

Once the link identifier is inserted into the packet, the
intermediary switch module accesses the path information
within the packet that specifies the route to the destination
switch module. The intermediary switch module could then
use the path information to determine how to transmit the
packet towards the destination switch module. For instance,
the path information could include a list of link identifiers to
be used in transmitting the packet to the destination switch
module. As an example, assume that the packet contains path
information specifying the link IDs “5, 2, 3”. The intermedi-
ary switch module could then determine which of these links
to use, and could then forward the packet on the correspond-
ing link. For example, the path information could also include
a switch ID field, which is incremented each time the packet
is forwarded to a switch module. In such an embodiment, the
switch ID field could be used as an index to the list of link IDs

20

40

45

4

to determine which link the current switch module should
use. For example, if the intermediary switch module deter-
mines the switch ID is “17, the intermediary switch module
could use this value as in index to the set of link IDs and could
determine that link “2” should be used to forward the packet
on towards the destination switch module. The intermediary
switch module could then transmit the packet on the deter-
mined link.

Generally speaking, the packet may go through any num-
ber of intermediary switch modules before ultimately reach-
ing the destination switch module. The destination switch
module, upon receiving the packet, could copy the set of
load/store operations within the packet into an execution
buffer on the destination switch module. The execution buffer
generally refers to some area of memory on a switch module
(or accessible by the switch module) that is configured to
store one or more load/store operations for execution. For
example, the execution buffer could be an array object on the
switch module and logic on the switch module could be
configured to monitor the array to determine when load/store
operations are copied into the array for execution. Upon
detecting one or more load/store operations within the array,
the logic could automatically execute the load/store opera-
tions (e.g., in an order based on the order the load/store
operations are stored in the array).

Once the load/store operations are executed, the destina-
tion switch module could transmit an acknowledgement mes-
sage back to the source, using the link information inserted
into the packet by the intermediary switch modules. In one
embodiment, the packet itself is transmitted back to the
source as the acknowledgement message. Upon receiving the
acknowledgement message, the source could conclude that
the packet was successfully received by the destination
switch module and that the set of load/store operations within
the packet were successfully executed by the destination
switch module.

These techniques for transmitting a management packet to
a remote switch module are discussed in more detail in Sec-
tion II below. However, Section I first describes an exemplary
environment in which embodiments may be implemented. Of
note, while embodiments may be implemented in the distrib-
uted switch environment described in Section I, such an envi-
ronment is provided for illustrative purpose only and without
limitation. Moreover, it is broadly contemplated that embodi-
ments may implemented in any switch or network environ-
ment, consistent with the functionality described herein.

1. Distributed Switch Infrastructure

A distributed, virtual switch may appear as a single switch
element to a computing system (e.g., a server) connected to
the distributed switch. In reality, the distributed switch may
include a plurality of different switch modules that are inter-
connected via a switching layer such that each of the switch
modules may communicate with any other of the switch
modules. For example, a computing system may be physi-
cally connected to a port of one switch module but, using the
switching layer, is capable of communicating with a different
switch module that has a port connected to a WAN (e.g., the
Internet). Moreover, each of the switch modules may be con-
figured to accept and route data based on two different com-
munication protocols. To the computing system, however, the
two separate switch modules appear to be one single switch.

The distributed switch may include a plurality of chips
(i.e., sub-switches) on each switch module. These sub-
switches may receive a multicast data frame (e.g., an Ethernet
frame) that designates a plurality of different destination sub-
switches. The sub-switch that receives the data frame is
responsible for creating copies of a portion of the frame, such

US 9,282,036 B2

5

as the frame’s payload, and forwarding that portion to the
respective destination sub-switches using the fabric of the
distributed switch. However, instead of simply using one
egress connection interface to forward the copies of the data
frame to each of the destinations sequentially, the sub-switch
may use a plurality of connection interfaces to transfer copies
of'the data frame in parallel. For example, a sub-switch may
have a plurality of Tx/Rx ports that are each associated with a
connection interface that provides connectivity to the other
sub-switches in the distributed switch. The port that receives
the multicast data frame can borrow the connection interfaces
(and associated hardware) assigned to these other ports to
transmit copies of the multicast data frame in parallel.

In addition, these sub-switches may be arranged in a hier-
archical structure where one or more sub-switches are
selected to act as surrogates. The sub-switches of the distrib-
uted switch are grouped together where each group is
assigned to one or more of the surrogates. When a sub-switch
receives a multicast data frame, it forwards the packet to one
of'the surrogate sub-switches. Each surrogate sub-switch may
then forward the packet to another surrogate or to a destina-
tion sub-switch. Because the surrogates may also transmit the
packets in parallel using two or more connection interfaces,
the bandwidth used to forward the multicast packet increases
for each surrogate used.

Further, the surrogate hierarchy may be configured to be
compatible with link aggregation where multiple physical
connections are grouped together to create an aggregated
(logical) link. Link aggregation requires similar data frames
to use the same data path when traversing the distributed
switch. With a unicast data frame, the sub-switch that receives
the data frame typically identifies the destination port (based
on a hash key) and forwards the data frame to the sub-switch
with that port. However, with multicast data frames, it may be
impossible to store information about every port in the dis-
tributed switch on each sub-switch. Instead, the sub-switch
that receives the multicast data frame may not identify the
destination port but instead forward the multicast data accord-
ing to the hierarchy.

In one embodiment, the multicast data is forwarded to at
least two sub-switches that each have at least one local port
that belongs to the same aggregated link. Because the Link
Aggregation Protocol permits only one of these local ports to
be the selected port, each sub-switch performs link selection
using the same hash value to determine if its local port is the
selected port. If the local port is the selected port, the sub-
switch transmits the multicast data frame using the selected
port. If not, the sub-switch disregards the multicast data.

In another embodiment, only one port is enabled for each
aggregated link in a multicast group. The multicast data
traverses the surrogate hierarchy until it reaches the sub-
switch with the enabled port. The sub-switch then performs
link selection to determine which of the ports in the trunk is
the selected port. If the selected port is the local enabled port
on the sub-switch, then the sub-switch uses that port to trans-
mit the multicast data. If not, the sub-switch determines
which port in the aggregated link is the selected port and
forwards the multicast data to the sub-switch that contains the
selected port.

In another embodiment, link selection is never performed.
Like in the previous embodiment, in this embodiment, only
one port is enabled for each aggregated link in a multicast
group. The multicast data traverses the surrogate hierarchy
until it reaches the sub-switch with the enabled port. How-
ever, the sub-switch never uses the hash value to determine
which of the ports in the aggregated link is the selected port.
Instead, all the multicast traffic for that aggregated link in the

10

15

20

25

30

35

40

45

50

55

60

65

6

MC group is transmitted through the enabled port rather than
being dispersed across the different ports of the aggregated
link based on the hash key.

FIG. 1 illustrates a system architecture that includes a
distributed virtual switch, according to one embodiment
described herein. The first server 105 may include at least one
processor 109 coupled to a memory 110. The processor 109
may represent one or more processors (e.g., microprocessors)
or multi-core processors. The memory 110 may represent
random access memory (RAM) devices comprising the main
storage of the server 105, as well as supplemental levels of
memory, e.g., cache memories, non-volatile or backup
memories (e.g., programmable or flash memories), read-only
memories, and the like. In addition, the memory 110 may be
considered to include memory storage physically located in
the server 105 or on another computing device coupled to the
server 105.

The server 105 may operate under the control of an oper-
ating system 107 and may execute various computer software
applications, components, programs, objects, modules, and
data structures, such as virtual machines 111. The server 105
may include network adapters 115 (e.g., converged network
adapters). A converged network adapter may include single
root /O virtualization (SR-IOV) adapters such as a Peripheral
Component Interconnect Express (PCle) adapter that sup-
ports Converged Enhanced Ethernet (CEE). Another embodi-
ment of the system 100 may include a multi-root 1/O virtual-
ization (MR-IOV) adapter. The network adapters 115 may
further be used to implement of Fiber Channel over Ethernet
(FCoE) protocol, RDMA over Ethernet, Internet small com-
puter system interface (iISCSI), and the like. In general, a
network adapter 115 transfers data using an Ethernet or PCI
based communication method and may be coupled to one or
more of the virtual machines 111. Additionally, the adapters
may facilitate shared access between the virtual machines
111. While the adapters 115 are shown as being included
within the server 105, in other embodiments, the adapters
may be physically distinct devices that are separate from the
server 105.

Inone embodiment, each network adapter 115 may include
a converged adapter virtual bridge (not shown) that facilitates
data transfer between the adapters 115 by coordinating access
to the virtual machines 111. Each converged adapter virtual
bridge may recognize data flowing within its domain (i.e.,
addressable space). A recognized domain address may be
routed directly without transmitting the data outside of the
domain of the particular converged adapter virtual bridge.

Each network adapter 115 may include one or more Eth-
ernet ports that couple to one of the bridge elements 120.
Additionally, to facilitate PCle communication, the server
may have a PCI Host Bridge 117. The PCI Host Bridge 117
would then connect to an upstream PCI port 122 on a switch
element in the distributed switch 180. The data is then routed
via the switching layer 130 to the correct downstream PCI
port 123 which may be located on the same or different switch
module as the upstream PCI port 122. The data may then be
forwarded to the PCI device 150.

The bridge elements 120 may be configured to forward
data frames throughout the distributed virtual switch 180. For
example, a network adapter 115 and bridge element 120 may
be connected using two 40 Gbit Ethernet connections or one
100 Gbit Ethernet connection. The bridge elements 120 for-
ward the data frames received by the network adapter 115 to
the switching layer 130. The bridge elements 120 may
include a lookup table that stores address data used to forward
the received data frames. For example, the bridge elements
120 may compare address data associated with a received

US 9,282,036 B2

7

data frame to the address data stored within the lookup table.
Thus, the network adapters 115 do not need to know the
network topology of the distributed switch 180.

The distributed virtual switch 180, in general, includes a
plurality of bridge elements 120 that may be located on a
plurality of a separate, though interconnected, hardware com-
ponents. To the perspective of the network adapters 115, the
switch 180 acts like one single switch even though the switch
180 may be composed of multiple switches that are physi-
cally located on different components. Distributing the
switch 180 provides redundancy in case of failure.

Each of the bridge elements 120 may be connected to one
or more transport layer modules 125 that translate received
data frames to the protocol used by the switching layer 130.
For example, the transport layer modules 125 may translate
data received using either an Ethernet or PCI communication
method to a generic data type (i.e., a cell) that is transmitted
via the switching layer 130 (i.e., a cell fabric). Thus, the
switch modules comprising the switch 180 are compatible
with at least two different communication protocols—e.g.,
the Ethernet and PCle communication standards. That is, at
least one switch module has the necessary logic to transfer
different types of data on the same switching layer 130.

Although not shown in FIG. 1, in one embodiment, the
switching layer 130 may comprise a local rack interconnect
with dedicated connections which connect bridge elements
120 located within the same chassis and rack, as well as links
for connecting to bridge elements 120 in other chassis and
racks.

After routing the cells, the switching layer 130 may com-
municate with transport layer modules 126 that translate the
cells back to data frames that correspond to their respective
communication protocols. A portion of the bridge elements
120 may facilitate communication with an Ethernet network
155 which provides access to a LAN or WAN (e.g., the
Internet). Moreover, PCI data may be routed to a downstream
PCI port 123 that connects to a PCle device 150. The PCle
device 150 may be a passive backplane interconnect, as an
expansion card interface for add-in boards, or common stor-
age that can be accessed by any of the servers connected to the
switch 180.

Although “upstream” and “downstream” are used to
describe the PCI ports, this is only used to illustrate one
possible data flow. For example, the downstream PCI port 123
may in one embodiment transmit data from the connected to
the PCle device 150 to the upstream PCI port 122. Thus, the
PCI ports 122, 123 may both transmit as well as receive data.

A second server 106 may include a processor 109 con-
nected to an operating system 107 and memory 110 which
includes one or more virtual machines 111 similar to those
found in the first server 105. The memory 110 of server 106
also includes a hypervisor 113 with a virtual bridge 114. The
hypervisor 113 manages data shared between different virtual
machines 111. Specifically, the virtual bridge 114 allows
direct communication between connected virtual machines
111 rather than requiring the virtual machines 111 to use the
bridge elements 120 or switching layer 130 to transmit data to
other virtual machines 111 communicatively coupled to the
hypervisor 113.

An Input/Output Management Controller (IOMC) 140
(i.e., a special-purpose processor) is coupled to at least one
bridge element 120 or upstream PCI port 122 which provides
the IOMC 140 with access to the switching layer 130. One
function of the IOMC 140 may be to receive commands from
an administrator to configure the different hardware elements
of the distributed virtual switch 180. In one embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

8

these commands may be received from a separate switching
network from the switching layer 130.

Although one IOMC 140 is shown, the system 100 may
include a plurality of IOMCs 140. In one embodiment, these
IOMCs 140 may be arranged in a hierarchy such that one
IOMC 140 is chosen as a master while the others are del-
egated as members (or slaves).

FIG. 2 illustrates a hardware level diagram of the system
100, according to one embodiment. Server 210 and 212 may
be physically located in the same chassis 205; however, the
chassis 205 may include any number of servers. The chassis
205 also includes a plurality of switch modules 250, 251 that
include one or more sub-switches 254 (i.e., a microchip). In
one embodiment, the switch modules 250, 251, 252 are hard-
ware components (e.g., PCB boards, FPGA boards, etc.) that
provide physical support and connectivity between the net-
work adapters 115 and the bridge elements 120. In general,
the switch modules 250, 251, 252 include hardware that con-
nects different chassis 205, 207 and servers 210, 212, 214 in
the system 200 and may be a single, replaceable part in the
computing system.

The switch modules 250, 251, 252 (e.g., a chassis intercon-
nect element) include one or more sub-switches 254 and an
IOMC 255, 256, 257. The sub-switches 254 may include a
logical or physical grouping of bridge elements 120—e.g.,
each sub-switch 254 may have five bridge elements 120. Each
bridge element 120 may be physically connected to the serv-
ers 210, 212. For example, a bridge element 120 may route
data sent using either Ethernet or PCI communication proto-
cols to other bridge elements 120 attached to the switching
layer 130 using the routing layer. However, in one embodi-
ment, the bridge element 120 may not be needed to provide
connectivity from the network adapter 115 to the switching
layer 130 for PCI or PCle communications.

Each switch module 250, 251, 252 includes an IOMC 255,
256,257 for managing and configuring the different hardware
resources in the system 200. In one embodiment, the respec-
tive IOMC for each switch module 250, 251, 252 may be
responsible for configuring the hardware resources on the
particular switch module. However, because the switch mod-
ules are interconnected using the switching layer 130, an
IOMC on one switch module may manage hardware
resources on a different switch module. As discussed above,
the IOMCs 255, 256, 257 are attached to at least one sub-
switch 254 (or bridge element 120) in each switch module
250, 251, 252 which enables each IOMC to route commands
on the switching layer 130. For clarity, these connections for
IOMCs 256 and 257 have been omitted. Moreover, switch
modules 251, 252 may include multiple sub-switches 254.

The dotted line in chassis 205 defines the midplane 220
between the servers 210, 212 and the switch modules 250,
251. That is, the midplane 220 includes the data paths (e.g.,
conductive wires or traces) that transmit data between the
network adapters 115 and the sub-switches 254.

Each bridge element 120 connects to the switching layer
130 via the routing layer. In addition, a bridge element 120
may also connect to a network adapter 115 or an uplink. As
used herein, an uplink port of a bridge element 120 provides
a service that expands the connectivity or capabilities of the
system 200. As shown in chassis 207, one bridge element 120
includes a connection to an Ethernet or PCI connector 260.
For Ethernet communication, the connector 260 may provide
the system 200 with access to a LAN or WAN (e.g., the
Internet). Alternatively, the port connector 260 may connect
the system to a PCle expansion slot—e.g., PCle device 150.
The device 150 may be additional storage or memory which
each server 210, 212, 214 may access via the switching layer

US 9,282,036 B2

9

130. Advantageously, the system 200 provides access to a
switching layer 130 that has network devices that are com-
patible with at least two different communication methods.

As shown, a server 210, 212, 214 may have a plurality of
network adapters 115. This provides redundancy if one of
these adapters 115 fails. Additionally, each adapter 115 may
be attached via the midplane 220 to a different switch module
250, 251, 252. As illustrated, one adapter of server 210 is
communicatively coupled to a bridge element 120 located in
switch module 250 while the other adapter is connected to a
bridge element 120 in switch module 251. If one of the switch
modules 250, 251 fails, the server 210 is still able to access the
switching layer 130 via the other switching module. The
failed switch module may then be replaced (e.g., hot-
swapped) which causes the IOMCs 255, 256, 257 and bridge
elements 120 to update the routing tables and lookup tables to
include the hardware elements on the new switching module.

FIG. 3 illustrates a virtual switching layer, according to one
embodiment described herein. As shown in the system 300,
each sub-switch 254 in the systems 100 and 200 is connected
to the other sub-switches 254 using the switching layer 130
via a mesh connection schema. That is, no matter the sub-
switch 254 used, a cell (i.e., data packet) can be routed to
another other sub-switch 254 located on any other switch
module 250, 251, 252. This may be accomplished by directly
connecting each of the bridge elements 120 of the sub-
switches 254—i.e., each bridge element 120 has a dedicated
data path to every other bridge element 120.

Alternatively, the switching layer 130 may use a spine-leaf
architecture where each sub-switch 254 (i.e., a leaf node) is
attached to at least one spine node. The spine nodes route cells
received from the sub-switch 254 to the correct spine node
which then forwards the data to the correct sub-switch 254.
An example of this configuration is shown in FIG. 4, which
illustrates a distributed, virtual switch, according to one
embodiment described herein. Generally, the sub-switches
254, ,, may reside in one or more switch modules (e.g., switch
modules 250, 251, 252). As shown in the system 400, each of
the sub-switches 254, ,; is connected to each of the spine
switch modules 410, ,, using the respective set of ports
410, _,. Thus, each of the sub-switches 254, _,could commu-
nicate with each of the other sub-switches 254, ,via a spine-
leaf connection schema. Additionally, although the system
400 illustrates a two-level spine-leaf configuration, other con-
figurations could additional hierarchical levels of spine
switch modules. For instance, a third level of spine switch
modules could be provided above the depicted spine switch
modules 410, ,, and the depicted spine switch modules
410, ,, could communicate with one another using the third
level of spine switch modules.

Advantageously, increasing the number of hierarchical
levels employed in the spine-leaf configuration allows the
distributed switch to scale to larger sizes, without requiring
individual switch modules (e.g., sub-switches 254, ,, and
spine switch modules 410, _,) to have an increased number of
ports. Such configurations may result in a relatively low cost
distributed switch solution that includes a large quantity of
inexpensive, low-port switch modules. However, such
examples are without limitation and are provided for illustra-
tive purposes only. Moreover, embodiments are not limited to
any particular technique for interconnecting the sub-switches
254.

II. Data Packet Control Component

As discussed above, embodiments provide techniques for
reacting to events in a switch module. FIG. 5 illustrates a
distributed, virtual switch configured with a DRLS compo-
nent, according to one embodiment described herein. As an

5

10

15

20

25

30

35

40

45

50

55

60

65

10

initial note, although the system 500 illustrates a spine-leaf
configuration for the distributed switch, as discussed above
other configurations may be employed (e.g., the mesh con-
nection schema in the system 300).

As shown, the system 500 includes sub-switch modules
254, , and a spine switch module 410. The system 500 also
includes an IOMC 257 communicatively coupled to the sub-
switch 254,. As discussed above, the IOMC 257 generally
provides the control plane logic for each of the switch mod-
ules 254, , and 410. Additionally, each of the switch modules
254, , and 410 contains a respective set of ports 530, ;, a
directed-route load/store (DRLS) component 510, 5, a data
packet component 520, 5, and predefined path information
525, ;. Additionally, each of the DRLS components 510,
contains an execution buffer 515, ;. As discussed above, each
of'the DRLS components 510,_; may be configured to detect
when load/store operations have been copied into their
respective execution buffer 515, ; and, upon detecting the
respective execution buffer 515, ; contains load/store opera-
tions, to execute the contents of the respective execution
buffer 515, .

As shown, the IOMC 257 is configured with a data packet
control component 540. In this embodiment, the predefined
path information 525 represents a path from the respective
switch module through the distributed switch to the IOMC
257, and is transmitted to each of the sub-switches 254, , and
the spine switch module 410 by the data packet control com-
ponent 540. For example, the data packet control component
540 could determine a path from each of the sub-switches
254, , and spine switch module 410 back to the IOMC 257.
For example, the data packet control component 540 could
express the path in terms of a port number (e.g., correspond-
ing to one of the ports 530, _;) at the respective switch module
and at each of the intermediary switch modules between the
respective switch module and the IOMC 257. For example,
the data packet control component 540 could determine that
the path from the sub-switch 254, to the IOMC involves the
port with port identifier “5” on the sub-switch 254, the port
with port identifier “1” on the spine switch module 410, and
the port with port identifier “5” on the sub-switch 254,. The
data packet control component 540 could store this path, for
example, using the string “5, 1, 5, and could transmit this
path information to the sub-switch 254, as the predefined path
information 525. Of course, it is broadly contemplated that
the path information may be expressed in any variety of other
formats, and this example is provided without limitation and
for illustrative purposes only.

The data packet control component 520, may then use the
predefined path information 525, to transmit data packets to
the IOMC 257. Generally, the data packets may be used for
any communications between the sub-switch 254, and the
IOMC 257. For example, the data packet control component
520, could generate data packets containing a notification
that a particular event has occurred. The data packet control
component 520, could then insert the predefined path infor-
mation 525, that was received from the data packet control
component 540 into a header portion of the generated data
packets. The data packet control component 520, could then
use the predefined path information 525, to determine which
of the ports 530, to transmit the packets on. Continuing the
example above of the path information specifying the string
“5, 1,57, the data packet control component 520, could deter-
mine that it is the first switch module in the path and could this
path position information as an index to select one of the ports
in the string “5, 1, 5”. Thus, the data packet control compo-

US 9,282,036 B2

11

nent 520, could determine that the port having a port identifier
of ““5” should be used, and could then transmit the generated
data packets over this port.

The data packets could be received by the data packet
component 520,. The data packet component 520, could pro-
cess the path information within the header portion of the data
packets and could determine that the spine switch module 410
is not the destination for the packet, but rather is the second
hop along the path to the destination. For instance, the header
information within the data packets could also contain a hop
counter value that could be incremented at each hop along the
path. As such, the data packet component 520, could use this
path position information as an index to select one of the ports
specified in the path information within the header portion of
the data packets. Thus, continuing the above example, the
data packet component 520, could determine that the second
value in the string “5, 1, 57 is “1”. Thus, the data packet
component 520, could determine that the received data pack-
ets should be forwarded on the port on the spine switch
module 410 having a port identifier of “1”, and could forward
the data packets accordingly (e.g., in addition to incrementing
the hop counter value within the data packets).

Similarly, the data packets could then be received by the
data packet component 520, and the data packet component
520, could in turn determine that the sub-switch 254, is not
the destination for the packets but rather is the third hop along
the path to the destination. Accordingly, the data packet com-
ponent 520, could access the third port within the path infor-
mation specified in the header portion of the data packets, and
could determine that the port on the sub-switch 254, having a
port identifier of “5” should be used. The data packet com-
ponent 520, could then forward the data packets using the
port with an identifier of “5”. As discussed above, the data
packet component 520, could also increment a hop counter
value within the data packets.

The data packet control component 540 could then receive
the data packets and could determine that the IOMC 257 is the
destination for the data packets. For example, the data packet
control component 540 could access the path information
within the data packets using the hop counter value within the
data packets as an index, and could determine that because the
portlisting of“5, 1, 5 does not contain a fourth port value, the
current switch module is the packet’s destination. Accord-
ingly, the data packet control component 540 could process
the payload of the packet. Thus, for example, if the packet(s)
contain a notification message, the data packet control com-
ponent 540 could extract the notification message from the
data packets and process it accordingly (e.g., by generating a
log entry, by notifying an administrator, etc.). In some situa-
tions, the data packet(s) may contain a set of load/store opera-
tions. In such a scenario, the data packet control component
540 could copy the load/store operations into an execution
buffer onthe IOMC 257, for execution by a DRLS component
on the IOMC 257.

Advantageously, by forwarding the data packets in the
aforementioned way, the switch modules (e.g., the sub-
switches 254, , and the spine switch module 410) can com-
municate with the IOMC 257, regardless of whether layer 2
network communication has been configured for the Ethernet
ports 530, 5. That is, because embodiments use a communi-
cations protocol for passing the data packets that is separate
from normal layer 2 communications over the Ethernet links,
embodiments may transmit data packets even when the layer
2 communications have not yet been initialized within the
distributed switch. For example, in the above example of the
sub-switch 254, transmitting a data packet containing a noti-
fication to the IOMC 257, the notification could specify that

10

15

20

25

30

35

40

45

50

55

60

65

12

layer 2 communications on the sub-switch 254, failed to
initialize. As embodiments are not reliant on layer 2 Ethernet
communications but instead use a different protocol for trans-
mitting data packets within the distributed switch, embodi-
ments can transmit the notification to the IOMC 257 even
when the layer 2 communications on the sub-switch 254,
failed to initialize. In one embodiment, embodiments are
configured to use a separate communications link (e.g., a
proprietary iLink configured for inter-switch communica-
tions within the distributed switch) to transmit the data packet
from the source to the destination.

In one embodiment, the data packet component 510, is
configured to notify the IOMC 257 of the data packet and to
provide the data packet to the IOMC 257, without requiring
the IOMC 257 to inspect the path information within the data
packet and determine that the IOMC 257 is the destination of
the data packet. For example, a main register partition on one
of the sub-switch modules could detect the event and could
react by writing to an ASYNC NOTIFY register within the
DRLS component 510. For instance, the main register parti-
tion could write data that is subsequently used as payload data
that is forwarded to a remote one of the sub-switch modules.
The DRLS component 510 could detect that data has been
written to the ASYNC NOTIFY register and could insert a
request to transmit the written data into a queue of DRLS
operations. A master sequencer within the DRLS component
510 could detect the queued request and could advance from
an IDLE_STATE to an ASYNC_BUILD_STATE. As a result
of doing so, the master sequencer could retrieve the pre-
defined path information and could insert this path informa-
tion into a header of a newly created message. Additionally,
the master sequencer could insert the data written into the
ASYNC NOTIFY register into the payload of the message. In
one embodiment, the newly created message is built within
the execution buffer 515 of the DRLS component 510. The
master sequencer could then advance to an ILS_
WrRsp_STATE, in which the master sequencer writes the
message to an ILINK send buffer for one of the links of the
sub-switch module. As a result of doing so, the message could
then be written across the outgoing link, and the master
sequencer could return to an IDLE_STATE.

The message could then be received at a second sub-switch
module by an I-Link Receive (ILR) partition. The ILR parti-
tion could then notify the DRLS component 510 on the sec-
ond sub-switch module of the received packet. In response,
the DRLS component 510 could insert the IL.R’s notification
into a queue of DRLS operations. At some point, a master
sequencer for the DRLS component 510 could detect the
queued notification and could advance from an IDLE_STATE
to an ILR_RdReq STATE. Additionally, the master
sequencer could examine the notification and could deter-
mine that the current sub-switch is a “hop” for the request. As
a result, an ILR Read Request sequencer could pull the mes-
sage over a register ring from the ILR receive buffer in the [LR
partition and could place the request into the DRLS execution
buffer 515, at which point the master sequencer begins pro-
cessing the notification. The master sequencer could then
advance to an ILS_WrRsp_STATE, where the master
sequencer writes the message to an JUNK send buffer for one
of the outgoing links of the sub-switch module. As a result of
doing so, the message could then be written across the out-
going link, and the master sequencer could return to the
IDLE_STATE.

This could continue until the message reaches the sub-
switch module connected to the IOMC, which in this example
is the final destination of the message. The message could be
received at an ILR partition (e.g., in an ILR receive bufter)

US 9,282,036 B2

13

and the ILR partition could notify the DRLS component 510
of the received message. The DRLS component 510 could
then determine that the current sub-switch module is the final
destination for the message (e.g., based on a hop counter
value within the message being equal to “0”, in an embodi-
ment where the hop counter value is decremented as it flows
from its source to its destination within the distributed
switch). Accordingly, the DRLS component 510 could insert
the message from the ILR partition into a queue of DRLS
operations. The DRLS master sequencer could then detect the
queued message and could advance from an IDLE_STATE to
an ILR_RdReq_STATE. An ILR Read Request Sequencer
pulls the packet over a register ring on the sub-switch module,
from the ILR receive buffer, and places the message into the
DRLS execution buffer 515. The DRLS component 510
could then determine that the message is an AsyncNotify
message that has arrived at its final destination, and could
advanceto an ASYNC_POST STATE. The DRLS component
510 could then notify the IOMC of the message. For example,
the DRLS component 510 could signal that the message is
awaiting processing by the IOMC using a bit in a status
register that is pollable by the IOMC. As another example,
where Ethernet links between the sub-switch module and the
IOMC are operational, the DRLS component 510 could write
the message to the IOMC in the form of an Ethernet packet
using an Interrupt/ AsyncNotify format.

FIG. 6 illustrates a data packet 600 containing a header
portion 610 and a payload portion 620. The header portion
610 contains destination route data 615. As discussed above,
logic (e.g., the data packet control component 540 on the
IOMC 257) could determine and transmit path information to
a source switch module (e.g., the sub-switch 254,) within the
distributed switch. Logic on the source switch module could
then, when generating the data packet 600, insert the received
destination route data 615 into the header portion 610 of the
data packet. As discussed above, in one embodiment, the path
information comprises a listing of port identifiers (e.g., “5, 1,
5”) and a hop counter value. In such an embodiment, the
listing of port identifiers could be used by the source switch
module and the intermediary switch modules between the
source switch module and the destination. Additionally, the
hop counter value generally represents an index value into the
list of port identifiers. For example, the hop counter value
could be initialized to a value of “1”, indicating that the first
switch module along the path should use the first port in the
list of port identifiers in forwarding the data packet, and each
switch module along the path could be configured to incre-
ment the hop counter value before forwarding the data
packet(s) on to the next switch module in the path. Thus, the
second switch module could receive the data packet with a
hop counter value of “2” (i.e., since the initial value of “1” was
incremented by the source switch module), indicating the
second port within the list of port identifiers should be used in
forwarding the data packet.

Generally, the payload portion 620 of the data packet 600
contains data to be processed by the destination module. For
instance, the payload portion 620 could include notification
information, indicative of an occurrence of some predefined
event. Upon detecting the predefined event has occurred,
logic on the source switch module could create the data
packet 600 containing the predefined path information 615
and the corresponding notification, and could transmit the
data packet to another switch module within the distributed
switch, using the appropriate port identifier specified in the
path information 615. As an example, if the path information

10

15

20

25

30

35

40

45

50

55

60

65

14

specifies the path of ““5, 1, 57, the logic on the source switch
module could transmit the data packet on the Ethernet link
having an identifier of “5”.

FIG. 7 illustrates a flow of a packet through a series of
switch modules, according to one embodiment described
herein. As shown, the system 700 includes switch modules
710, 720 and 740. For purposes of this example, assume that
the switch module 740 has previously determined a path
through the distributed switch from the switch module 710
back to the switch module 740 (e.g., expressed using a listing
of link identifiers “3, 4”), and has transmitted this path infor-
mation to the switch module 710. Further assume that a data
packet component 520 on the switch module 710 has detected
that layer 2 network communications on one or more Ethernet
links on the switch module 710 have failed to initialize.

In response to detecting the Ethernet links have failed to
initialize, the data packet component 520 could create a data
packet containing a notification message specifying which
link(s) did not initialize properly. The data packet component
520 could then insert the received path information into a
header portion of the created data packet. The data packet
component 520 could also insert a hop counter value into the
header portion of the data packet. For instance, in addition to
inserting the listing of link identifiers 3, 4”, the data packet
component 520 could also insert a hop counter value of “1”
into the data packet, indicating that the switch module 710
should transmit the data packet using the first link identifier
within the listing. As discussed above, the hop counter value
could be used to determine which of the link identifiers each
switch module along the path should use to forward the data
packet. Thus, in this example, the data packet component 520
could determine that the first link identifier of “3” should be
used, and could transmit the data packet using the Ethernet
port 3 715. Additionally, before transmitting the data packet,
the data packet component 520 on the switch module 710
could increment the hop counter value to “2”, so that the next
switch module in the path (i.e., the switch module 720) can
identify the appropriate value within the listing of port iden-
tifiers to use in forwarding the data packets.

As shown, the data packet is then received on the Ethernet
port 2 725 on the switch module 720. A data packet compo-
nent 520 on the switch module 720 could then determine
whether the switch module 720 is the destination of the data
packet. For example, the data packet component 520 could
use the hop counter value within the data packet as an index
into the listing of port identifiers within the data packet, and
could determine whether a value exists at the position corre-
sponding to the hop counter value within the listing of port
identifiers. Thus, in this example, the data packet component
520 on the switch module 720 could determine that the hop
counter value indicates the second value within the listing of
port identifiers should be used, and thus could determine that
the data packet should be forwarded on the link 730 having a
port identifier of “4”.

FIG. 8 is a flow diagram illustrating a method for transmit-
ting packet headers to switch modules in a distributed switch,
according to one embodiment described herein. As shown,
the method 800 begins at block 810, where the data packet
control component 540 determines a respective path from
each switch module in the distributed switch to a control node
of the distributed switch (e.g., the IOMC 257). For instance,
the data packet control component 540 could be configured to
dynamically determine a network topology of the distributed
switch module, and could determine the paths from the indi-
vidual switch modules back to the control node based on the
determined topology. In one embodiment, the data packet
control component 540 is preconfigured (e.g., by a system

US 9,282,036 B2

15

administrator) with the network topology and/or the path
information. As discussed above, the path through the switch
module could be expressed as a list of Ethernet link identifi-
ers, where each identifier in the list corresponds to a different
hop along a path through the switch module. Once the paths
are determined, the data packet control component 540 then
transmits a respective data packet header containing the path
information to each of the switch modules within the distrib-
uted switch, and the method 800 ends.

FIG. 9 is a flow diagram illustrating a method for transmit-
ting a packet containing a predefined packet header, accord-
ing to one embodiment described herein. As shown, the
method 900 begins at block 910, where a data packet com-
ponent 520 on a particular switch module within the distrib-
uted switch receives a request to transmit a data packet to the
control node. Generally, the data packet can be transmitted for
any number of different reasons. For example, logic on the
switch module could detect that a particular event has
occurred, and responsive to the occurrence of the event, could
request that a data packet specifying the event (e.g., using an
event identifier) be generated and transmitted to the control
node, in order to notify the control node of the occurrence of
the event. As another example, logic on the switch module
could be configured to transmit log messages to the control
node using data packets. More generally, it is broadly con-
templated that the data packets can be created for any reason
and can include any type of data, consistent with the func-
tionality described herein.

Upon receiving the request, the data packet component 520
on the switch module retrieves packet header information that
specifies a path through the distributed switch to the control
node (block 915). For example, the path header information
could have been transmitted to the switch module by the data
packet control component 540 on the control node, using the
aforementioned method 800. The data packet component 520
then generates a data packet based on the request, and inserts
the retrieved packet header into the generated data packet
(block 920). The data packet component 520 could also be
configured to insert a hop counter value in the packet. As
discussed above, the hop counter value could be incremented
at each hop along the path through the distributed switch, and
could be used by the various switch modules along the path as
an index into the path information in the packet header.
Advantageously, doing so enables each switch module along
the path to access the appropriate Ethernet link identifier
within the listing in the packet header.

The data packet component 520 then transmits the data
packet using the Ethernet link identifier specified in the
retrieved packet header (block 925), and the method 900
ends. As discussed above, although the data packet is trans-
mitted over an Ethernet link within the distributed switch, the
data packet may not conform to standard layer 2 Ethernet
communication standards, but instead could be expressed
using a separate and distinct communications protocol.
Advantageously, doing so allows the data packet to be trans-
mitted through the distributed switch, even when layer 2
communications for the various Ethernet links are inoperable
(e.g., before the layer 2 communication services have been
initialized).

FIG. 10 is a flow diagram illustrating a method for trans-
mitting a packet to a control node, according to one embodi-
ment described herein. As shown, the method 1000 begins at
block 1010, where the data packet component 520 on a switch
module within the distributed switch receives a data packet
containing a packet header that specifies a path to a destina-
tion node within the distributed switch (i.e., the control node
in this example). Of note, although examples herein are used

10

15

20

25

30

35

40

45

50

55

60

65

16

to transmit data packets to a control node of a distributed
switch, it is broadly contemplated that the techniques
described herein can be used to generate network messages to
any sort of network device and in a variety of different con-
texts, consistent with the functionality described herein.

Upon receiving the data packet, the data packet component
520 then determines whether the current switch module is the
destination node for the received packet (block 1015). For
example, the data packet component 520 could use a hop
counter value within the received data packet as an index into
a listing of link identifiers within the packet header, and if the
hop counter value corresponds to a link identifier within the
listing, the data packet component 520 could determine that
the current switch module is not the destination of the packet.
In such a scenario, the data packet component 520 could
retrieve the path data from the data packet (block 1020) and
could determine how to transmit the data packet on towards
the next node in the path, based on the retrieved path data
(block 1025). For example, if the data packet component 520,
using the hop counter value as an index, retrieves a link
identifier from the listing of link identifiers within the path
information, the data packet component 520 could determine
that the data packet should be transmitted on towards the
destination using the retrieved link identifier. At block 1030,
the data packet component 520 then transmits the data packet
towards the next node in the path (e.g., by transmitting the
data packet over the Ethernet link of the switch module that
corresponds to the determined link identifier). The method
1000 then returns to block 1015, where the next node in the
path determines whether it is the destination node for the data
packet.

If instead the data packet component 520 on the current
switch module determines that the current switch module is
the destination for the data packet, the data packet component
520 then extracts the payload information from the data
packet (block 1035) and processes the payload information
(block 1040), and the method 1000 ends. As discussed above,
the payload information within the data packet can contain
log information, an error notification, an event notification,
performance data, and so on. More generally, it is broadly
contemplated that any data may be contained within the pay-
load of the data packet, consistent with the functionality
described herein. Advantageously, by using the techniques
described herein, embodiments allow data packets to be
transmitted over the Ethernet links of a distributed switch,
separate and independent from any layer 2 data communica-
tions over the Ethernet links.

In the preceding, reference is made to embodiments of the
invention. However, it should be understood that the inven-
tion is not limited to specific described embodiments. Instead,
any combination of the following features and elements,
whether related to different embodiments or not, is contem-
plated to implement and practice the invention. Furthermore,
although embodiments of the invention may achieve advan-
tages over other possible solutions and/or over the prior art,
whether or not a particular advantage is achieved by a given
embodiment is not limiting of the invention. Thus, the pre-
ceding aspects, features, embodiments and advantages are
merely illustrative and are not considered elements or limita-
tions of the appended claims except where explicitly recited
in a claim(s). Likewise, reference to “the invention” shall not
be construed as a generalization of any inventive subject
matter disclosed herein and shall not be considered to be an
element or limitation of the appended claims except where
explicitly recited in a claim(s).

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method

US 9,282,036 B2

17

or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-

10

15

20

25

30

35

40

45

50

55

60

65

18

chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Embodiments of the invention may be provided to end
users through a cloud computing infrastructure. Cloud com-
puting generally refers to the provision of scalable computing
resources as a service over a network. More formally, cloud
computing may be defined as a computing capability that
provides an abstraction between the computing resource and
its underlying technical architecture (e.g., servers, storage,
networks), enabling convenient, on-demand network access
to a shared pool of configurable computing resources that can
be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction. Thus, cloud com-
puting allows a user to access virtual computing resources
(e.g., storage, data, applications, and even complete virtual-
ized computing systems) in “the cloud,” without regard for
the underlying physical systems (or locations of those sys-
tems) used to provide the computing resources.

Typically, cloud computing resources are provided to a
user on a pay-per-use basis, where users are charged only for
the computing resources actually used (e.g. an amount of
storage space consumed by a user or a number of virtualized
systems instantiated by the user). A user can access any of the
resources that reside in the cloud at any time, and from any-
where across the Internet. In context of the present invention,
auser may access applications or related data available in the
cloud being run or stored on the servers. For example, an
application could execute on a server implementing the vir-
tual switch in the cloud. Doing so allows a user to access this
information from any computing system attached to a net-
work connected to the cloud (e.g., the Internet).

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession

US 9,282,036 B2

19

may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A method of transmitting a packet from a source switch
module to a destination switch module, comprising:

receiving, at the source switch module, from the destina-

tion switch module, an ordered listing of Ethernet link
identifies specifying a path for transmitting packets from
the source switch module to the destination switch mod-
ule;

upon detecting an occurrence of a predefined event, gen-

erating a packet that includes (i) the received ordered
listing of Ethernet link identifiers, (ii) a second ordered
listing of Ethernet link identifiers, specifying a return
path for transmitting data packets from the destination
switch module to the source switch module, and (iii) a
set of load/store operations to be executed by the desti-
nation switch module, wherein an intermediary switch
module along the path from the source switch module to
the destination switch module is configured to modity
the packet by inserting an Ethernet link identifier into the
second portion of the packet, the Ethernet link identifier
corresponding to a determined incoming Ethernet port
on which the intermediary switch module received the
packet;

determining an Ethernet port of the source switch module

on which to transmit the packet, by selecting one of the
ordered listing of Ethernet link identifiers;

transmitting the packet towards the destination switch

module using the determined Ethernet port, wherein the
destination switch module is configured to copy the set
of load/store operations into an execution buffer for
automatic execution; and

once the set of load/store operations have been executed by

the destination switch module, receiving, at the source
switch module, from the destination switch module, a
response packet that includes (i) the second ordered
listing of Ethernet link identifiers specifying the return
path from the destination switch module to the source
switch module and (ii) payload data to be processed at
the source switch module.

2. The method of claim 1, wherein the packet includes a
hop counter value, configured to be incremented at each hop
along the path from the source switch module to the destina-
tion switch module.

3. The method of claim 2, wherein the hop counter value is
used as an index in selecting one of the Ethernet link identi-
fiers from the ordered listing of Ethernet link identifiers.

4. The method of claim 3, further comprising:

incrementing the hop counter value within the packet,

before transmitting the packet to the second switch mod-
ule.

5. The method of claim 1, wherein the payload data com-
prises an event identifier corresponding to the first event.

15

20

25

30

35

40

45

55

60

65

20

6. The method of claim 1, wherein each of the Ethernet link
identifiers within the ordered listing of Ethernet link identi-
fiers corresponds to a respective hop along the path from the
source switch module to the destination switch module.

7. A non-transitory computer-readable medium containing
computer-readable program code that, when executed, per-
forms an operation for transmitting a packet from a source
switch module to a destination switch module, comprising:

receiving, at the source switch module, from the destina-

tion switch module, an ordered listing of Ethernet link
identifies specifying a path for transmitting packets from
the source switch module to the destination switch mod-
ule;

upon detecting an occurrence of a predefined event, gen-

erating a packet that includes (i) the received ordered
listing of Ethernet link identifiers, (ii) a second ordered
listing of Ethernet link identifiers, specifying a return
path for transmitting data packets from the destination
switch module to the source switch module, and (iii) a
set of load/store operations to be executed by the desti-
nation switch module, wherein an intermediary switch
module along the path from the source switch module to
the destination switch module is configured to modify
the packet by inserting an Ethernet link identifier into the
second portion of the packet, the Ethernet link identifier
corresponding to a determined incoming Ethernet port
on which the intermediary switch module received the
packet;

determining an Ethernet port of the source switch module

on which to transmit the packet, by selecting one of the
ordered listing of Ethernet link identifiers;

transmitting the packet towards the destination switch

module using the determined Ethernet port, wherein the
destination switch module is configured to copy the set
of load/store operations into an execution buffer for
automatic execution; and

once the set of load/store operations have been executed by

the destination switch module, receiving, at the source
switch module, from the destination switch module, a
response packet that includes (i) the second ordered
listing of Ethernet link identifiers specifying the return
path from the destination switch module to the source
switch module and (ii) payload data to be processed at
the source switch module.

8. The non-transitory computer-readable medium of claim
7, wherein the packet includes a hop counter value, config-
ured to be incremented at each hop along the path from the
source switch module to the destination switch module.

9. The non-transitory computer-readable medium of claim
8, wherein determining the Ethernet port of the source switch
module further comprises:

selecting an Ethernet link identifier from an ordered listing

of link identifiers, using the hop counter value as an
index.

10. The non-transitory computer-readable medium of
claim 9, the operation further comprising:

incrementing the hop counter value within the packet,

before transmitting the packet to the second switch mod-
ule.

11. The non-transitory computer-readable medium of
claim 7, wherein the payload data comprises an event identi-
fier corresponding to the first event.

12. The non-transitory computer-readable medium of
claim 7, wherein each of the Ethernet link identifiers within
the ordered listing of Ethernet link identifiers corresponds to
a respective hop along the path from the source switch mod-
ule to the destination switch module.

US 9,282,036 B2

21

13. A system, comprising:

a processor; and

amemory containing a program that, when executed by the
processor, performs an operation for transmitting a
packet from a source switch module to a destination 3
switch module, comprising:

receiving, at the source switch module, from the destina-
tion switch module, an ordered listing of Ethernet link
identifies specifying a path for transmitting packets from
the source switch module to the destination switch mod-
ule;

upon detecting an occurrence of a predefined event, gen-
erating a packet that includes (i) the received ordered
listing of Ethernet link identifiers, (ii) a second ordered
listing of Ethernet link identifiers, specifying a return
path for transmitting data packets from the destination
switch module to the source switch module, and (iii) a
set of load/store operations to be executed by the desti-
nation switch module, wherein an intermediary switch
module along the path from the source switch module to
the destination switch module is configured to modity
the packet by inserting an Ethernet link identifier into the
second portion of the packet, the Ethernet link identifier
corresponding to a determined incoming Ethernet port
on which the intermediary switch module received the
packet;

determining an Ethernet port of the source switch module
on which to transmit the packet, by selecting one of the
ordered listing of Ethernet link identifiers;

transmitting the packet towards the destination switch
module using the determined Ethernet port, wherein the

10

15

20

25

30

22

destination switch module is configured to copy the set
of load/store operations into an execution buffer for
automatic execution; and

once the set of load/store operations have been executed by

the destination switch module, receiving, at the source
switch module, from the destination switch module, a
response packet that includes (i) the second ordered
listing of Ethernet link identifiers specifying the return
path from the destination switch module to the source
switch module and (ii) payload data to be processed at
the source switch module.

14. The system of claim 13, wherein the packet includes a
hop counter value, configured to be incremented at each hop
along the path from the source switch module to the destina-
tion switch module.

15. The system of claim 14, wherein determining the Eth-
ernet port of the source switch module further comprises:

selecting an Ethernet link identifier from an ordered listing

of link identifiers, using the hop counter value as an
index.

16. The system of claim 15, the operation further compris-
ing:

incrementing the hop counter value within the packet,

before transmitting the packet to the second switch mod-
ule.

17. The system of claim 13, wherein the payload data
comprises an event identifier corresponding to the first event.

18. The system of claim 13, wherein each of the Ethernet
link identifiers within the ordered listing of Ethernet link
identifiers corresponds to a respective hop along the path
from the source switch module to the destination switch mod-
ule.

